Dark Photons at LHCb

Constantin Weisser, MIT

US LUAM

October 26 2018

Dark Forces

lightest DM particle could be stable because it's (dark) charged

What if there is no connection between the SM and dark sector up to the Planck scale?

Dark Forces

DM force carriers can couple to SM via a Portal.

Dark Photons

The A' establishes a well motivated portal.

Visible A' Decays

If $m_{A'}$ < 2 m_{DM} then visible decays to SM.

LHCb Inclusive A' $\rightarrow \mu^+ \mu^-$

Count A' Candidates

Compare to prompt γ^*

⇒ Set Limits

Visible A' Decays

Shaded blue: 2016 results; Light blue lines: Predicted Run 3 (2021 - 2023) reach;

LHCb Run 2 Extensions

Update A'
$$\rightarrow \mu^+ \mu^-$$

No Iso

b tag

 $A' \rightarrow e^+ e^-$

Can the portals help us discover dark matter?

Backgrounds LHCb Inclusive A' $\rightarrow \mu^+ \mu^-$

- Irreducible $\gamma^* \rightarrow \mu^+ \mu^-$
- Resonant decays to dimuons
- For each muon:
 - Misidentification of a prompt hadron as a muon
 - Misreconstruction of a muon produced in a heavy-flavour decays

- Photon conversions to mu mu in the silicon-strip vertex detector (the VELO)
- B-hadron decays producing two real muons
- Low-mass tail from K⁰_S → π⁺ π⁻, where both pions are misidentified as muons